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Vapor  condensation on a turbulent  cold liquid jet  is considered within the f r a m e w o r k  of the 
"new" P r a n d t l - H e r t l e r  mixing length theory.  Our data on the heat  t r a n s f e r  coefficient  a r e  
in good a g r e e m e n t  with the exper imenta l  r e su l t s .  

The p rob lem of vapor  condensation on a f lat  turbulent  je t  of a cold liquid was solved by G. N. A b r a m -  
ovich and A. P. P rosku ryakov  within the f r a m e w o r k  of the "old" Prandt l  mixing length theory  in the absence  
of the hor izontal  component  of vapor  veloci ty  [1]. However ,  the resu l t s  obtained in [1] differ  f rom the e x p e r -  
imental  data by a fac tor  of 1.5-2 [2]. In view of the p re s s ing  need for  investigating the physical  phenomena 
at  the sur face  of a jet  and the high intensi ty of the heat  exchange and m a s s  t r a n s p o r t  p r o c e s s e s ,  the authors  
have cons idered  a s i m i l a r  p rob lem within the f r a m e w o r k  of the "new" P r a n d t l - H e r t l e r  mixing length 
theory .  

Assume  that  a cold liquid wi th the  ass igned thermophys ica l  p a r a m e t e r s  occupies the lower  ha l f - space  
and moves  hor izonta l ly  at the veloci ty  Ul. As a r e su l t  of condensation,  a turbulent  mixing l aye r  develops 
at  the in ter face  between the liquid and the vapor  space.  I t  is a s sumed  that complete  instantaneous condensa-  
t ion of the flowing vapor  occurs  at the upper  boundary of the mixing l a y e r ,  that the phase t rans i t ion sur face  
is a plane,  and that  there  a r e  no vapor  bubbles beyond the condensation boundary.  The vapor  veloci ty  is 
Vv; it is caused only by the condensation p roce s s  and is perpendicu la r  to the sur face  of phase t rans i t ion.  
The the rmophys ica l  p a r a m e t e r s  of the vapor  a r e  ass igned.  The coordinate sys t em is posit ioned so that  the 
axis of a b s c i s s a s  (longitudinal d i rec t ion of the boundary layer)  l ies  in the condensation plane (Fig. 1). Ac-  
cording to the "new" P r a n d t l - H e r t l e r  mixing length theory ,  the equation of motion is [1] 

Ou Ou 02u 
u - -  + v - -  = ~ ( x )  , ( 1 )  
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where  ~ = ~ b ( u  1 -  u0) is the coefficient  of turbulent  k inemat ic  v iscos i ty .  
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Fig. 1. Boundary l a y e r  of the jet. 

We introduce the following notation: 

= ~y/x; u/U = ~F' (~); b = kx; U = u 1 cos a; (2) 

~) = ~ udy = xUF (~); v/U = ~ F' (~) - -  F (~). 

After  pe r fo rming  the substitution of va r iab les  in (1) by 
means  of (2), we a r r i v e  at the s e l f - s i m i l a r  equation of 
motion 

F ' "  4- 2aFt:" = O, (3) 

where  o = 1 / 2 ~ ,  and X = u0/u l is the rat io  of flow velo-  
ci t ies at the edges of the mixing zone at the jet  sect ion in 
question. We seek  the solution of Eq. (3) in the fo rm of a 
s e r i e s  with r e spec t  to in teger  powers  of X: 

oF = ~ s (~). (4) 
t/=O 
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Fig. 2. Heat t r ans fe r  coefficient as a function 
of the p a r a m e t e r S .  1) o = 1 0 ,  5 =1.5;  2) 14 and 
1.5, respect ively;  3) 16, 1.5; 4) 10, 2.5; 5) 14, 
2.5; 6) 16, 2.5. 

Retaining th ree  t e r m s  of the expansion and assuming that ~F0(~), we obtain the following sys tem of equations: 

[ F]" + 2~F'~ =- O, 
(5) , 

[ F~" + 2~F~ q- 2F~F~ = 0. 

The formal  solution of sys tem (5) in the f i r s t  approximation is given by 
z 

F 1 (~) ---- F, (0) + F~ (0) ~ + F'~ (0)j" dz S exp ( - -  x ~) d r ,  (6) 
0 0 

where FI(0), F't(0) and F~(0) a re  the constants to be determined.  The position of the lower  boundary of the 
mixing l aye r  is de termined  by setting the turbulent  shear ing s t r e s s e s  equal to zero ,  which is equivalent to 
the r equ i remen t  that  FI(~) vanish. It is readi ly  seen f rom [6] that these conditions are  sat isf ied if } --  - ~ .  

The longitudinal veloci ty  of the mixing l aye r  at its boundary with the basic liquid flow is equal to the 
project ion of the basic flow veloci ty  on the axis of abscissas :  

lira ~s F' (~) : 1, (7) 

while, at the condensation sur face ,  we have by definition 

oF' (0) = ~. (8) 

In o r d e r  to sa t is fy  conditions (7) and (8), we put 

F'~ (0) ~ - -  1 and F~ (0) - -  2 1 - -  ~, (9)  

For  determining Fl(0), we use the continuity equation for  the density of the momentum flow at the condensa-  
t ion boundary, which is wri t ten in the following form in project ion on the x axis:  

uv = - -  u'v---'. (1 O) 

We wri te  the general  express ion  for turbulent  fr ict ion 

p kOy 1,=o 

and, omitting the in termedia te  calculations,  obtain the following: 

--(~F' (0) (~F (0) = 1 oF" (0 ) .  
"A 

(It) 

From relat ionships (11) and (9), we have 

1 - -~  (12) 
FI(0)= V ~ 2  " 

If we know the form of the function Fl(~) , we can de te rmine  the position of the phase t rans i t ion boundary. 
Since 

I g ~ =  - -  __v = lira IF (~)-- ~F' (~)1, (13) 
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Fig. 3. Heat  t r a n s f e r  coefficient  (kca l /m  2 .h .  deg C) 

j as  a function of the cha r ac t e r i s t i c  flow veloci ty  (m 
/ s ec ) .  1) Resul ts  bor rowed f rom [1]; 2) our  resu l t s  
(a = 10, 6 = 1.5, fl = 1.0). The exper imenta l  data [2] 
fo r  a jet  flowing out of a 15-ram end-piece  a re  shown 
by black points,  while the data for  a 10 -mm end-piece  
a r e  shown by white points.  
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we take into account  (9) and (12) and obtain 

1 - -  s 
tg ~ = crV.~_ ~ (14) 

The equation closing the s y s t e m  of boundary conditions is the continuity equation fo r  the energy  flow 
densi ty  at the condensation sur face :  

aT 
- -  Pl v (O)(i v -  i 1 ) = cp Pl 8t a y  ( 1 5 )  

where  ~t = ~tbt(ul -u0)  is the empi r i ca l  constant  of the t he rma l  boundary l a y e r  theory ,  b t = ktx is the width 
of the t he rma l  boundary  l aye r ,  and k t is the propor t iona l i ty  fac tor .  

We introduce the d imens ion less  quanti t ies 

T O - -  T cp(T o -  T 0 and ((5~}= , (16) 
i v - -  il (T~ - -  T1) ~t 

where  ~t -- b~, and T O is the t e m p e r a t u r e  at  the condensation boundary.  

With an al lowance for  (16), Eq. (15) can be wr i t ten  thus: 

1 ~aO' (0) (17) - o F  (o)  = ~ -  

where  ~ = 1/64 2~ tk t (1 - ) t  ). Taking into account  (12), we obtain f rom (17) an express ion  for/3: 

_ 26 (1 - -  ~) (18) 
Y a o0' (0) 

The unknown value of the function 0'(0) figuring in express ion  (18) is found by solving the t he rma l  p rob lem.  
The equation of the t he rm a l  boundary l a y e r  

0T 0T 0~T 
t A - -  -3V U - -  ~ 8  T -  

Oy Oy Oy ~ 

is reduced to the following form by taking into account (15) and (16): 

0" (~) + 26 ~ [~F (~)10' (~) = 0.  (19) 

According to (16), the boundary conditions a re  given by 

T = T O =~ 0 (0) = 0, 
1 ( 2 0 )  

T = T1 =#- 0 ( -  oo)= - - .  
cr6 

By solving Eq. (19) for  the boundary conditions (20), we obtain 

[0 y 

0' ( 0 ) = - - [ o 5  f exp (--j'25ZaF(~)d~ )dy] -~ . (21) 
- - r 1 6 2  0 



By substituting (21) in (18), weobta in  
O y 

(22) 

The heat t r a n s f e r  coefficient  in vapor condensation at the surface  of the mixing l aye r  is determined by 

K = To _ T! T O - -  r x \Oy/~---o " ~ , W ~ ( ~  
(23) 

By substituting (22) in (23), we find 

K~---"  Cppl l] 
0 y 

~ oxp ( -  .i' ) dy 
(24) 

The dependence of the heat  t r a n s f e r  coefficient  K on G, 5, and the p a r a m e t e r  ~ is given in Fig. 2. 

In Fig. 3, the experimental  data obtained by N. M. Zinger  [2] a re  compared with the calculations 
based on (24). This f igure also shows the theoret ica l  resul t s  obtained in [1] (curve 1). It is evident that 
ou r  resul ts  show a be t t e r  agreement  with exper imental  data than the resu l t s  obtained in [1]. This was to 
be expected,  since the "new" P r a n d t l - H e r t l e r  mixing length theory  has much g r e a t e r  potential i t ies because 
of the p resence  of two empir ical  constants (e and b), the f i r s t  of which de termines  the thickness of the 
dynamic boundary l ayer ,  while the second de te rmines  the thickness of the thermal  boundary l aye r .  
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N O T A T I O N  

a r e t h e v e l o c i t i e s  of the basic liquid flow and the vapor,  respect ively;  
is the f i r s t  empir ical  constant of the theory;  
a re  the mean velocity components; 
is the coefficient  of turbulent  kinematic viscosity; 
ts the s t r eam function; 
is the boundary l aye r  width; 
Ls the proport ional i ty  factor;  
is the angle between the condensation plane and the direct ion of the basic liquid flow; 
is the second empir ica l  constant of the theory;  
~s the rat io  of flow veloci t ies  at the edges of the mixing zone at a given jet  section; 
ts the liquid velocity at the condensation surface;  
~s the empir ica l  constant of the thermal  boundary l aye r  theory;  
Ls the liquid density; 
Ls the specific heat of the liquid; 
a re  the enthalpies of the vapor  and the liquid, respect ively;  
is the re la t ive  width of the thermal  boundary layer ;  
is the t empera tu re  at the condensation boundary; 
is the t empera tu re  of the main body of liquid flow; 
is the presen t  t empera ture ;  
is the heat t r an s f e r  coefficient; 
is the thermal  flux f rom the vapor  space.  
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