HEAT EXCHANGE IN VAPOR CONDENSATION ON
A COLD LIQUID JET
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Vapor condensation on a turbulent cold liquid jet is considered within the framework of the
"new" Prandtl —Hertler mixing length theory, Our data on the heat transfer coefficient are
in good agreement with the experimental results.

The problem of vapor condensation on a flat turbulent jet of a cold liquid was solved by G, N, Abram-
ovich and A. P. Proskuryakov within the framework of the "old" Prandtl mixing length theory in the absence
of the horizontal component of vapor velocity [1]. However, the results obtained in [1] differ from the exper-
imental data by a factor of 1.5-2 [2]. In view of the pressing need for investigating the physical phenomena
at the surface of a jet and the high intensity of the heat exchange and mass transport processes, the authors
have considered a similar problem within the framework of the "new" Prandtl —Hertler mixing length
theory.

Assume that a cold liquid withthe assigned thermophysical parameters occupies the lower half-space
and moves horizontally at the velocity u;. As a result of condensation, a turbulent mixing layer develops
at the interface between the liquid and the vapor space. If is assumed that complete instantaneous condensa-
tion of the flowing vapor occurs at the upper boundary of the mixing layer, that the phase transition surface
is a plane, and that there are no vapor bubbles beyond the condensation boundary. The vapor velocity is
vys it is caused only by the condensation process and is perpendicular to the surface of phase transition.
The thermophysical parameters of the vapor are assigned. The coordinate system is positioned so that the
axis of abscissas (longitudinal direction of the boundary layer) lies in the condensation plane (Fig, 1). Ac-
cording to the "new" Prandtl —Hertler mixing length theory, the equation of motion is [1]
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where & = nb(u;—y;) is the coefficient of turbulent kinematic viscosity.
We introduce the following notation:

= oy/x; u/lU =0oF (§); b=kx, U=uy cosa,

(2)
b= {udy = xUF ®); olU =& F' () —F (§).
P
o After performing the substitution of variables in (1) by
means of (2), we arrive at the self-similar equation of
x* motion
F'"" 4 96FF" =0, ()

Wz

_— where ¢ = 1/2V kX, and X = uy/u, is the ratio of flow velo-
cities at the edges of the mixing zone at the jet section in
question, We seek the solution of Eq. (3) in the form of a
series with respect to integer powers of A:

oF — i W, (8). (4)

n=0

Fig. 1. Boundary layer of the jet.
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Retaining three terms of the expansion and assuming that oFy(£), we obtain the following system of equations:
F;'" - 28F7 =0,
[ t 1 (5)
| Fy” + 287y + 2F;F, =0,
The formal solution of system (5) in the first approximation is given by
§ z
Fy(€) = F1(0) + F, ()& + F; (0) dz [ exp(—x)dx, (6)
0 0

where F,(0), F;(O) and F;' (0) are the constants to be determined. The position of the lower boundary of the
mixing layer is determined by setting the turbulent shearing stresses equal to zero, which is equivalent to
the requirement that F;'(g) vanish., It is readily seen from [6] that these conditions are satisfied if { — —<,

The longitudinal velocity of the mixing layer at its boundary with the basic liquid flow is equal to the
projection of the basic flow velocity on the axis of abscissas:
hmcF’ ®=1, N

while, at the condensation surface, we have by definition

oF (0)=A\. (8)

In order to satisfy conditions (7) and (8), we put
A—1 2 1-—A

d Fi(0) = — —=— —. (9)
ro {0 Va A .
For determining F,(0), we use the continuity equation for the density of the momentum flow at the condensa-
tion boundary, which is written in the following form in projection on the x axis:

Fi(0) =

uw=—uv. (10)
We write the general expression for turbulent friction
—iT = b))
0y /y=0
and, omitting the intermediate calculations, obtain the following:
—oF’ (0) GF(O)———— oF" (0) . (11)
From relationships (11) and (9), we have
—* (12)

F,(0) = V T

If we know the form of the function F,(¢), we can determine the position of the phase transition boundary.
Since

tgo= —— = hrn 1IF (8) —EF' @)1, (13)
u
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we take into account (9) and (12) and obtain

The equation closing the system of boundary conditions is the continuity equation for the energy flow
density at the condensation surface:

— oy POy — i) = gy 3‘5 (15)

where &4 = ntb(u;—1y) is the empirical constant of the thermal boundary layer theory, bt = kix is the width
of the thermal boundary layer, and ki is the proportionality factor,

We introduce the dimensionless quantities

p—2To—T) y ye o Lo=T (16)
fy—1i T, —Ty G,
where ot =90, and T, is the temperature at the condensation boundary.
With an allowance for (16), Eq. (15) can be written thus:
—GF (0) = - o0’ (0), an
where o = 1/6V 2wki(1 -1}, Taking into account (12), we obtain from (17) an expression for 3:
6o 28(1 — ) (18)

Ay mod(0)
The unknown value of the function 6'(0) figuring in expression (18) is found by solving the thermal problem.
The equation of the thermal boundary layer

oT or 0T
U— +0 — =g, —
Oy dy oyt

ig reduced to the following form by taking into account (15) and (16):
0 () + 26° [oF (§)] 8" (8) = 0. - (19)
According to (16), the boundary conditions are given by

T =Ty=6(0) =0,

| (20)
T: T1=>-6(—~ oo): —_—
o6
By solving Eq. (19) for the boundary conditions (20), we obtain
10 y
0 (0) = — [oa f exp (w s 28%F (E) dg )dy}“—l ) (21)
—0 b



By substituting (21} in (18), we obtain

0 ¥
28 (1 — ) ( Y )
= . | exp|— | 28%F (£)dt |dy.
p— 2 [ (— [ovor @at )ay (22)
—o 0
The heat transfer coefficient in vapor condensation at the surface of the mixing layer is determined by
Kog L o ot (1) _pUll), 22
Ty—T, To—~T\0Y Jy=0 AV moff
By substituting (22) in (23), we find
Cpp]: U

K= 5 , :
0262 5 exp(~'s' 28%F () dg)dy
0

~—an

(24)

The dependence of the heat transfer coefficient K on o, 6, and the parameter g is given in Fig, 2.

In Fig. 3, the experimental data obtained by N. M. Zinger [2] are compared with the calculations
based on (24). This figure also shows the theoretical results obtained in [1] (curve 1). It is evident that
our results show a better agreement with experimental data than the results obtained in [1]. This was to
be expected, since the "new" Prandtl —Hertler mixing length theory has much greater potentialities because
of the presence of two empirical constants (o and 6), the first of which determines the thickness of the
dynamic boundary layer, while the second determines the thickness of the thermal boundary layer.
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g
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NOTATION

arethe velocities of the basic liquid flow and the vapor, respectively;
is the first empirical constant of the theory;

are the mean velocity components;

is the coefficient of turbulent kinematic viscosity;

is the stream function;

is the boundary layer width;

is the proportionality factor;

is the angle between the condensation plane and the direction of the basic liquid flow;
is the second empirical constant of the theory;

is the ratio of flow velocities at the edges of the mixing zone at a given jet section;
is the liquid velocity at the condensation surface;

is the empirical constant of the thermal boundary layer theory;

is the liquid density;

is the specific heat of the liquid;

are the enthalpies of the vapor and the liquid, respectively;

is the relative width of the thermal boundary layer;

is the temperature at the condensation boundary;

is the temperature of the main body of liquid flow;

is the present temperature;

is the heat transfer coefficient;

is the thermal flux from the vapor space,
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